

Fresado de Alto Avance y de Gran Profundidad de Corte

MFH Boost

Fresado de Alto Avance con Mayores Profundidades de Corte

Fresas de Mango de Alto Avance con Diám. de Corte Disponible desde ø22 hasta 2,5mm de Profundidad de Corte

Excelente Rendimiento en una Amplia Gama de Aplicaciones, incluyendo Piezas Automotrices, Materiales de Difícil Corte y Moldes Ofrece Múltiples Soluciones para Diversos Entornos de Mecanizado

Amplia Línea Disponible de Fresas de Mango, Fresas de Planear y Tipos Modulares

Fresado de Alto Avance y de Gran Profundidad de Corte

MFH Boost

La más Reciente Adición a la Serie MFH - Alto Avance más Gran Profundidad de Corte para Mayor Capacidad de Fresado Excelente Rendimiento en una Amplia Gama de Aplicaciones, incluyendo Piezas Automotrices, Materiales de Difícil Corte y Moldes

1

Fresado de Alto Avance con Capacidades de Gran Profundidad de Corte

Video

Un pequeño inserto de tamaño 04 (inserto de 4 bordes y doble cara) permite profundidades de corte de hasta 2,5 mm con diám. de corte disponibles a partir de ø22 mm.

Alcanza un mecanizado de alta eficiencia en varias aplicaciones de fresado lateral, ranurado, fresado helicoidal y mecanizado en rampa.

Nuevo Valor con 2.5mm Max. Profundidad de Corte

1 Ofrece una Mejor Alternativa a las **Fresa de Mango 90º** Convencionales (Desbaste y Acabado Medio)

Piezas Automotrices

Mecanizado de Acero General

- Aumento de la productividad con el mecanizado de gran profundidad de corte
- Alta fiabilidad en entornos de mecanizado inestables
 Mayor longitud del voladizo y mejor rigidez de sujeción
 Mecanizado estable con máquinas de baja rigidez
- Mecanizado en rampa de alta eficiencia

 Gran ángulo de rampa (Pequeño diám. ø25mm: 3°)

 Mejora dramática de la eficiencia en el mecanizado en rampa de cavidades
- Mayor vida útil de la herramienta con un mecanizado de alta eficiencia

2 Ofrece una Mayor Solución a las Fresas de Alto Avance Convencionales

Partes Generales/Moldes (Alto Desbastado/Planeado)

Partes Generales, Prensado y Molde de Fundición

- Mayor productividad con la gran profundidad de corte
- Larga vida útil de la herramienta y mayor eficiencia gracias a la reducción de la ruta de la herramienta

Reducción del tiempo de mecanizado al mecanizar piezas de trabajo con grandes variaciones en los márgenes de mecanizado

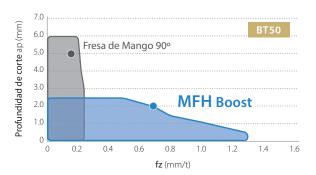
■ Mayor vida útil de la herramienta con un mecanizado de alta eficiencia

*MFH Mini/Harrier recomendadas para el contorneado con pequeña profundidad de corte y alto avance

3 Soluciones para el Mecanizado de Materiales de Difícil Corte

Partes para la Industria Aeronáutica/Energética

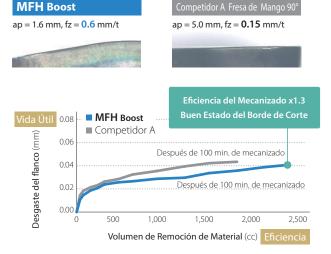
Materiales de difícil corte, como el mecanizado de aleaciones de titanio y acero inoxidable


- Las altas tasas de avance aumentan la productividad
- Larga vida de la herramienta por la reducción de las rutas de la herramienta
- La buena combinación con el grado de resistencia al calor PR1535 proporciona una larga vida útil de la herramienta y un mecanizado estable

Mejora de la Productividad y Reducción de los Costes de Mecanizado

- Disponible para una Variedad de Aplicaciones y Entornos de Mecanizado
- Soluciones para **Fresa de Mango 90º** (Mecanizado de Acabado Rugoso a Medio)
- Las Altas Tasas de Avance Mejoran Considerablemente la Eficiencia del Mecanizado

Ejemplo de Simulación de Eficiencia de Mecanizado



Alta Eficiencia y Buena Vida Útil de la Herramienta

Comparación de la Eficiencia de Mecanizado y Condición del Borde de Corte (Evaluación interna)

Condición del borde de corte después de 100 minutos de mecanizado

Vc = 150 m/min, ae = 12.5 mm, Sin Refr., $SCM440 \oplus Ø25$ (1 Inserto) BT50

Alta Estabilidad en un Entorno de Mecanizado Inestable

Comparación de la Resistencia a Vibraciones (Evaluación interna)

Ranurado

ø 25 (3 Insertos) Aire exterior S50C BT50

Video

Eficiencia del Mecanizado

103 cc/min

I U 5 cc/min Vc = 120 m/min, ap = 1.5 mm, fz = **0.6** mm/t

Eficiencia del

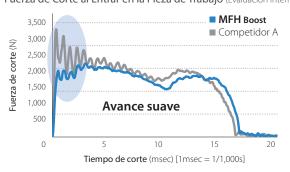
Competidor A Fresa de Mango 90°

MFH Boost

31 cc/min Trepidación (Fue imposible de mecanizar) Vc = 80 m/min, ap = 2 mm, fz = 0.2 mm/t

23 cc/min

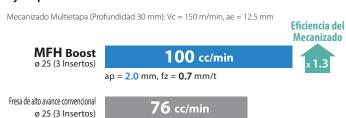
Vc = 80 m/min, ap = 2 mm, fz = 0.15 mm/t


Diseños de Mecanizado de Alta Eficiencia y Estables

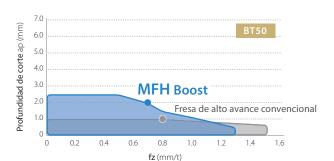
Tecnología original de KYOCERA

El diseño de borde de corte convexo reduce el impacto al entrar en la pieza de trabajo

Fuerza de Corte al Entrar en la Pieza de Trabajo (Evaluación interna)



 $Vc = 150 \text{ m/min, ap} = 2.0 \text{ mm,} \\ ae = 25 \text{ mm, fz} = 0.7 \text{ mm/t,} \\ \text{Sin Refr., } S50C \text{ } \emptyset \text{ } 50 \text{ } (1 \text{ Inserto)} \text{ } BT50 \\ \end{cases}$


Mejor Solución para las Fresas de Alto Avance Convencionales

El Gran Profundidad de Corte Mejora Considerablemente la Eficiencia del Mecanizado

Ejemplo de Simulación de Eficiencia de Mecanizado

ap = 1.0 mm, fz = 0.8 mm/t

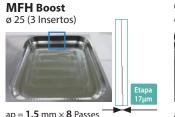

Video

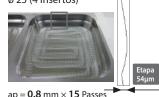
Video

Alta Eficiencia y Buena Vida Útil de la Herramienta

Comparación de la Eficiencia de Mecanizado y Condición del Borde de Corte (Evaluación interna)

Condición del borde de corte después de 100 minutos de mecanizado




Vc = 150 m/min, ae = 12.5 mm, Sin Refr., SCM440 ø 25 (1 Inserto) BT50

Excelente Precisión de la Pared

Comparación de la Eficiencia del Mecanizado y Precisión de la Pared (Evaluación interna) Vaciado (Profundidad 12mm)

Competidor B Fresa de Alto Avance ø 25 (4 Insertos)

Q = 115 cc/min
Q = 81 cc/min
Condiciones de Corte: Vc = 200 m/min, ae = 12.5 mm, fz = 0.8 mm/t, Sin Refr., S50C BT50

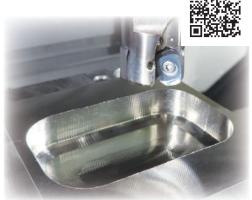
Superior Precisión de la Pared

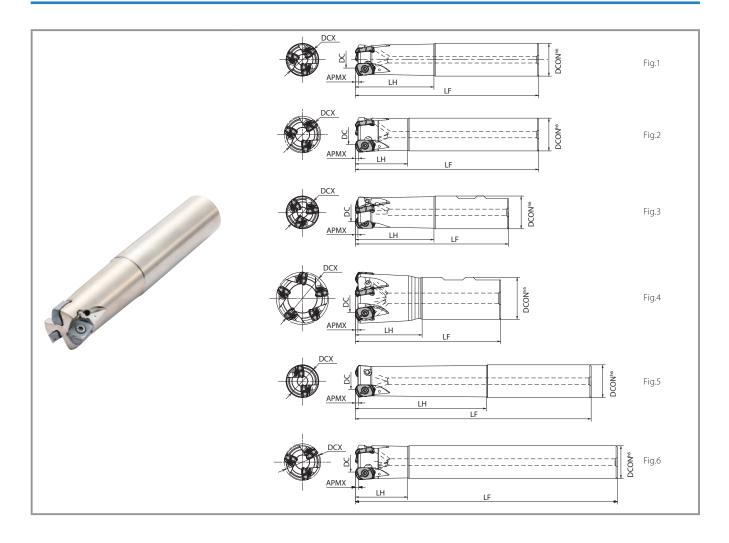
3 Soluciones para el Mecanizado de Materiales de Difícil Corte

Mejora considerable de la eficiencia del mecanizado con aleación de titanio, mecanizado de acero inoxidable, etc.

Comparación de la Eficiencia del Mecanizado (Evaluación interna)

Vaciado de Aleación de Titanio (Profundidad 6 mm)

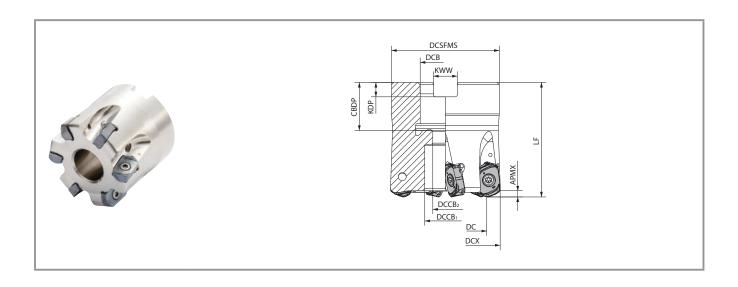

MFH Boost


Acerca de 1' 30"

ap = 1.5 mm × 4 Passes (fz = ~0.35 mm/t)

Competidor C
Fresa de Alto Avance $ap = 0.6 \text{ mm} \times 10 \text{ Passes } (fz = \sim 0.4 \text{ mm/t})$

 $Vc = 50 \text{ m/min, ae} = 12.5 \text{ mm(ae/DCX} = 50\%), \\ \hat{A}ngulo \ de \ rampa \ 3^{\circ} \ Ti-6Al-4V \ Con \ Refr., \ \emptyset 25 \ (3 \ insertos) \ BT50$

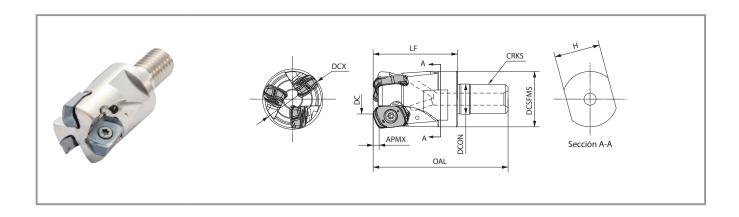


Dimensões do Porta-ferramentas

			.± -5	ertos			Dimensio	nes (mm)			Ángulo de Inclinación				D				
Vástago		Descripción	Disponi- bilidad	Nº de Insertos	DCX	DC	DCON	LH	LF	APMX	A.R.	Agujero de Refrigeración	Forma	Peso (kg)	Rotación Máx. (min ⁻¹)				
	MFH	25-S25-04-2T	•	2	25	14	25	60	140					0.5	12,700				
Estándar		25-S25-04-3T	•	3	25	14	25	60	140	2.5	-10°	Sí	Fig.1	0.5	12,700				
(Recto)		32-S32-04-4T	•	4	32	21	32	70	150	2.3	-10	31	rig.i	0.8	11,200				
		32-S32-04-5T	•	5	32	21	32	/0	130					0.8	11,200				
	MFH	22-S20-04-2T	•	2	22	11	20	30	130					0.3	13,600				
		28-S25-04-3T	•	3	28	17	25	40	140					0.5	12,000				
1		28-S25-04-4T	•	4	20	17	23	40	140					0.5	12,000				
Largo (Recto)		35-S32-04-4T	•	7	35	24				2.5	-10°	Sí	Fig.2	0.8	10,700				
(,		35-S32-04-5T	•	5		24	32	50	150					0.8	10,700				
		40-S32-04-5T	•	40 29	32	30	130					0.9	10,000						
		40-S32-04-6T	•	6	40	23								0.9	10,000				
	MFH	25-W25-04-2T	•	2	25	14	25	60	117					0.4	12,700				
		25-W25-04-3T	•	3	23	17	23	00	117				Fig.3	0.4	12,700				
Estándar		32-W32-04-4T	•	4	32	21		70	131	2.5	-10°	Sí	119.5	0.7	11,200				
(Weldon)		32-W32-04-5T	•	5	32	2.1	32		131	2.5	-10	31		0.7	11,200				
		40-W32-04-5T	•	,	40	29	32	50	111				Fig.4	0.7	10,000				
		40-W32-04-6T	•	6	40	23		30	111				119.4	0.7	10,000				
	MFH	25-S25-04-2T-180	•	2	25	25	25	25 14 100 180 F	180	0 180	190		180				Fig.5	0.6	12,700
		25-S25-04-3T-180	•	3	23	17	25	100	100				119.5	0.6	12,700				
Vástago Largo		28-S25-04-3T-200	•	,	28	17	40	40		2.5	-10°	Sí	Fig.6	0.7	12,000				
(Recta)		32-S32-04-4T-200	•	4	32	21		120	200	00 2.5	10) 31	Fig.5	1.1	11,200				
		35-S32-04-4T-200	•	7	35	24	32	50					Fig.6	1.1	10,700				
		40-S32-04-5T-250	•	5	40	29		50	250				119.0	1.5	10,000				

Precauções com a Rotação Máxima
Ajuste el número de revoluciones por minuto dentro de la velocidad de corte recomendada especificada en la pieza de trabajo en la contraportada.
No utilice la fresa de mango o la fresa en la revolución máxima o más alta, ya que la fuerza centrífuga puede hacer que las virutas y las partes se dispersen, aunque no haya carga.

Dimensões do Porta-ferramentas


Diám. del			늘	Nº de					Dime	nsiones	(mm)					Ángulo de Inclinación	- Agujero de	Peso	Rotación Máx.	
Agujero		Descripción	Disponi- bilidad	Insertos	DCX	DC	DCSFMS	DCB	DCCB ₁	DCCB ₂	LF	CBDP	KDP	KWW	APMX	A.R.	Refrigeración	(kg)	(min ⁻¹)	
Espec.	MFH	080R-04-8T	•	8	00	60	76	21.75	26	17	63	22	0.0	12.7	2.5	-10°	C:	1.6	7.100	
Pulgada		080R-04-10T	•	10	80	69	76	31.75	26	17	63	32	8.0	12.7	2.5	-10-	Sí	1.6	7,100	
	MFH	040R-04-5T-M	•	5	40	29	38	16	15	9	40	19	5.6	8.4				0.2	10.000	
		040R-04-6T-M	•	6	40	29	38	16	15	9	40	19	5.0	8.4				0.2	10,000	
		050R-04-6T-M	•	0	50	39												0.4	9,000	
		050R-04-7T-M	•	7	30	39	47											0.4	9,000	
		052R-04-6T-M	•	6	F2	41	47 22	22	22 18	11	50	21	6.3	10.4				0.5	8,800	
Espec.		052R-04-7T-M	•	7	52 41	41		22		''				10.4	2.5	-10°	Cí	0.4	8,800	
Métricas		063R-04-7T-M	•	,							30				2.5	-10°	Sí	0.8		
		063R-04-9T-M	•	9	63	52	60											0.8	0.000	
		063R-04-7T-27M	•	7	03	52	60											0.8	8,000	
		063R-04-9T-27M	•	9				27	20	12		24	7.0	12.4				0.7		
		080R-04-8T-M	•	8	80	69	76	2/	27 20	20	13		24	7.0	7.0 12.4	12.4			1.8	7.100
		080R-04-10T-M	•	10	00	09					03	63						1.7	7,100	

•: Itens Estándar

Piezas

		Piezas							
	Tornillo de Fijación	Llave	Compuesto Antiengripante						
Descripción									
MFH04	SB-3575TRP	DTPM-10 priete Recomendado para el Tornil	P-37						
	13143333								

Precauções com a Rotação Máxima
Ajuste el número de revoluciones por minuto dentro de la velocidad de corte recomendada especificada en la pieza de trabajo en la contraportada.
No utilice la fresa de mango o la fresa en la revolución máxima o más alta, ya que la fuerza centrífuga puede hacer que las virutas y las partes se dispersen, aunque no haya carga.

Dimensões do Porta-ferramentas

		ni-	de Insertos		Dimensiones (mm)									- Agujero de	Rotación Máx.							
	Descripción	Disponi- bilidad	N° de In	DCX	DC	DCSFMS	DCON	OAL LF CRKS H		Н	APMX	A.R.	Refrigeración	(min ⁻¹)								
MFH	22-M10-04-2T	•	2	22	11	18.7	10.5	48	30	M10XP1.5	15				13,600							
	25-M12-04-2T	•		25	14										12.700							
	25-M12-04-3T	•	3	25	14	23	12.5	5 56 35 M12XP1.75 19	10				12,700									
	28-M12-04-3T	•	3	28	17	23	12.5		33	WI12AP1./5	19				12,000							
	28-M12-04-4T	•	4		17										12,000							
	32-M16-04-4T	•	4		21	21									11 200							
	32-M16-04-5T	•	5	32	21							2.5	-10°	Sí	11,200							
	35-M16-04-4T	•	4	35	24										10,700							
	35-M16-04-5T	•	5	33	24	30	17	62	40	M16XP2.0	24				10,700							
	40-M16-04-5T	•)	40	29	30	17	02	40	IVITOXP2.U	24				10,000							
	40-M16-04-6T	•	6	40	29										10,000							
	42-M16-04-5T	•	5	42	31																	9,800
	42-M16-04-6T	•	6	42	31										9,000							

Precauções com a Rotação Máxima

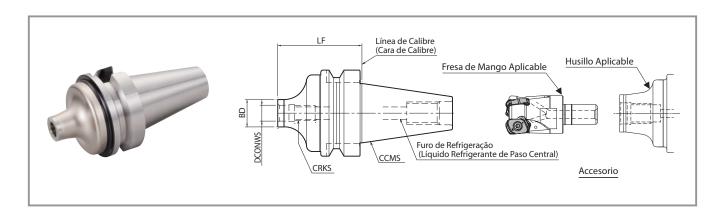
: Itens Estándar

Insertos Aplicáveis

Formato	Descripción		Dimensiones (mm) MEGACOAT NANO						ANO	Recubrimiento CVD
		W1	S	D1	INSL	INSL RE		PR1525	PR1510	CA6535
Inserto de 2 caras y 4 bordes	LOMU 040410ER-GM	9.1	4.4	4.1	14.5	1.0	•	•	•	•

•: Itens Estándar

Classe dos Insertos:

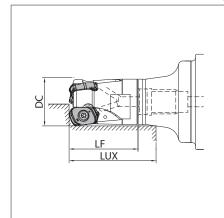

PR1535 Para el Mecanizado de Acero (Orientado al mecanizado estable), Aleación de titanio, Acero inoxidable austenítico/Endurecido por precipitación, etc.

PR1525 Para el Mecanizado de Acero (De uso general)

PR1510 Para el Mecanizado de Hierro Fundido

CA6535 Para Acero inoxidable martensítico, Aleación de base de níquel resistente al calor, etc.

recauções cum a notação maxima Ajuste el número de revoluciones por minuto dentro de la velocidad de corte recomendada especificada en la pieza de trabajo en la contraportada. No utilice la fresa de mango o la fresa en la revolución máxima o más alta, ya que la fuerza centrifuga puede hacer que las virutas y las partes se dispersen, aunque



Dimensión

Descripción	Disponi-					Agujero de	Husillo (Fijación en dos caras)	Fresa de Mango
Descripcion	bilidad	LF	BD	DCONWS	CRKS	Refrigeración	CCMS	Aplicable (Cabeza)
BT30K- M10-45	•	45	18.7	10.5	M10×P1.5	Sí	BT30	MFHM10
M12-45	•	45	23	12.5	M12×P1.75	31	БІЗО	MFHM12
BT40K- M10-60	•	60	18.7	10.5	M10×P1.5			MFHM10
M12-55	•	55	23	12.5	M12×P1.75	Sí	BT40	MFHM12
M16-65	•	65	30	17	M16×P2.0			MFHM16

: Itens Estándar

Profundidad Real de la Fresa de Mango

		Fresa de M	ango Aplicable (Cabeza	a)	Profundidad Real de la Fresa de Mango (mm)
Descripción	de Husillo		Diám. de Corte (mm)	Dimensiones (mm)	LUX
		Descripción	DC	LF	LUX
BT30K-	M10-45	MFH22-M10	22	30	39.2
	M12-45	MFH25-M12	25	35	42.8
	IVI I Z-45	MFH28-M12	28	35	45.5
BT40K-	M10-60	MFH22-M10	22	30	44.5
	M12-55	MFH25-M12	25	35	44.6
	W112-33	MFH28-M12	28	35	47.6
		MFH32-M16	32	40	51.2
	M16-65	MFH35-M16	35	40	60.2
	IVI 10-05	MFH40-M16	40	40	64.0
		MFH42-M16	42	40	64.0

Serie MFH Amplia Línea para Diversas Aplicaciones y Entornos de Mecanizado

MFH Boost ø22 ~ ø80

ø16 ~ ø50

MFH Micro Ø8 ~ Ø16 Pequeño Diámetro/ Tipo de Paso Fino

MFH Mini Gran Diámetro

MFH Harrier

Ø25 ~ Ø160

			Descripción del portaherra	mientas y tasa de avance (fz: mm/t)		Clase de Inserto Reco	mendada (Vc: m/min)		
Rompevirutas	Ma	aterial	ap(mm)	MFH04		MEGACOAT NANO		Recubrimiento CV	
			ар(ппп)	IVII 11U4	PR1535	PR1525	PR1510	CA6535	
			≤ 0.5	0.20 - 0.80 - 1.30					
			≤ 1.0	0.20 - 0.70 - 1.10	_				
	A Cl	(~ 280HB)	≤ 1.5	0.20 - 0.60 - 0.80	120 - 160 - 220	120 - 160 - 220	-	_	
	Acero Carbono (SxxC)		≤ 2.0	0.20 - 0.40 - 0.70					
	Aleación de		≤ 2.5	0.20 - 0.30 - 0.50					
	Acero		≤ 0.5	0.20 - 0.75 - 1.20	- ☆	*			
	(SCM, etc.)		≤ 1.0	0.20 - 0.65 - 1.00	100 – 150 – 200	100 – 150 – 200			
		(~ 350HB)	≤ 1.5	0.20 - 0.55 - 0.70	(Se Recomienda	(Se Recomienda	-	_	
			≤ 2.0	0.20 - 0.40 - 0.55	el Mecanizado Sin Refr.)	el Mecanizado Sin Refr.)			
			≤ 2.5	0.20 - 0.25 - 0.35	Jiii Neii.)	Jiii Neii.)			
			≤ 0.5	0.20 - 0.60 - 1.10	☆	*			
			≤ 1.0	0.20 - 0.50 - 0.90	80 - 120 - 160	80 - 120 - 160			
		(~ 40HRC)	≤ 1.5	0.20 - 0.40 - 0.65	(Se Recomienda	(Se Recomienda	-	_	
			≤ 2.0	0.20 - 0.30 - 0.55	el Mecanizado Sin Refr.)	el Mecanizado Sin Refr.)			
	_		≤ 2.5	0.20 - 0.25 - 0.35	Sirricit.)	Sirricit.)			
			≤ 0.5	0.10 - 0.30 - 0.50		*			
	Acero para		≤ 1.0	0.10 - 0.25 - 0.40	_	60 – 100 – 130			
	Moldes	(40 ~ 50HRC)	≤ 1.5	0.10 - 0.20 - 0.30	_	(Se Recomienda	_	-	
	(SKD, etc.)		≤ 2.0			el Mecanizado Sin Refr.)			
	_		≤ 2.5			Sirricit.)			
			≤ 0.5	0.10 - 0.20 - 0.40		*			
			≤ 1.0	0.10 - 0.15 - 0.25		50 – 70 – 100			
		(50 ~ 55HRC)	≤ 1.5		-	(Se Recomienda	-	-	
			≤ 2.0	-		el Mecanizado Sin Refr.)			
			≤ 2.5			Jiii Neii.)			
			≤ 0.5	0.20 - 0.60 - 1.00					
	Acero Inoxidabl	o Austonítico	≤ 1.0	0.20 - 0.50 - 0.90		☆			
	(SUS304, etc.)	e Austernitico	≤ 1.5	0.20 - 0.45 - 0.60	100 - 140 - 180	100 - 140 - 180	-	-	
	(, , , , , , , , , , , , , , , , , , ,		≤ 2.0	0.20 - 0.30 - 0.50					
GM			≤ 2.5	0.20 - 0.25 - 0.40					
Civi			≤ 0.5	0.20 - 0.60 - 1.00					
	Acero Inoxidabl	o Martonsítico	≤ 1.0	0.20 - 0.50 - 0.90					
	(SUS403, etc.)	e marterisitico	≤ 1.5	0.20 - 0.45 - 0.60	100 – 150 – 200	_	_	150 - 200 - 30	
	(, , , , , , , , , , , , , , , , , , ,		≤ 2.0 0.20 - 0.30 - 0.50						
			≤ 2.5	0.20 - 0.25 - 0.40					
			≤ 0.5	0.10 - 0.30 - 0.50					
	Acero Inoxidabl		≤ 1.0	0.10 - 0.25 - 0.45					
	Templado por P	recipitación	≤ 1.5	0.10 - 0.15 - 0.25	90 – 120 – 150	_	_	_	
	(SUS630, etc.)		≤ 2.0						
			≤ 2.5						
			≤ 0.5	0.20 - 0.80 - 1.30	-				
	Hierro Fundido	Gris	≤ 1.0	0.20 - 0.70 - 1.10	-		*		
	(FC)		≤ 1.5	0.20 - 0.60 - 0.80	-	_	120 – 160 – 220	_	
			≤ 2.0	0.20 - 0.40 - 0.70	-				
			≤ 2.5	0.20 - 0.30 - 0.50					
			≤ 0.5	0.20 - 0.60 - 1.00	-				
	Hierro Fundido	Nodular	≤ 1.0	0.20 - 0.50 - 0.90	-		*		
	(FCD)		≤ 1.5	0.20 - 0.40 - 0.70	_	_	100 – 150 – 200	_	
			≤ 2.0	0.20 - 0.30 - 0.60	-				
			≤ 2.5	0.20 - 0.25 - 0.40					
		aciones resistentes a nperatura a base de Ni	≤ 0.5	0.10 - 0.30 - 0.45	-				
	Aleaciones resis		≤ 1.0	0.10 - 0.25 - 0.40	- ☆			*	
			≤ 1.5	0.10 - 0.15 - 0.20	20 – 30 – 50	_	_	20 – 30 – 50	
			≤ 2.0						
			≤ 2.5	0.10 0.30					
			≤ 0.5	0.10 - 0.30 - 0.50	-				
	Aleación de Tita	inio	≤ 1.0	0.10 - 0.25 - 0.45	*				
	(Ti-6Al-4V)		≤ 1.5	0.10 - 0.15 - 0.25	40 – 60 – 80		-	_	
			≤ 2.0 ≤ 2.5						

[•] El número en negrita corresponde a las condiciones iniciales recomendadas. Ajustar la velocidad de corte y la tasa de avance en las condiciones descritas anteriormente, de acuerdo con la situación real de mecanizado.

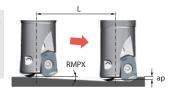
[•] Se recomienda el mecanizado con líquido refrigerante para el Acero Inoxidable Endurecido por Precipitación, Aleación de Base de Níquel Resistente al Calor y Aleación de Titanio.
• El mecanizado con refr. puede tener una menor vida útil de la herramienta que el mecanizado sin refr. Ajustar la velocidad de corte, la tasa de avance y la profundidad de corte por debajo de las condiciones recomendadas.

[•] En el mecanizado con BT30 o equivalente, la tasa de avance debe reducirse al 25% de las condiciones de corte recomendadas. No se recomienda pará el ranurado.

[•] Para el ranurado se recomienda el líquido refrigerante de paso central.

 $^{{\}boldsymbol \cdot}$ No se recomiendan el ranurado o el vaciado para el tipo de fresa de planear.

Para el fresado frontal, se recomienda ajustar la anchura de corte en el 75% o menos del diámetro de corte.
 Se recomienda ajustar el vástago largo en el 75% o menos de las condiciones recomendadas tanto para el ap como para el avance.


■ Programa Aproximado de Ajuste del Radio

Forma	R Programable (mm)	Porción Sobrecortada del Radio (mm)	Porción No Mecanizada (mm)
	1.5	0	1.42
Angulo Máx. de Inclinação da Parede Lateral do Material	2.0	0	1.24
Protoin Recruitade Protoin Neterational Relational Rela	3.0 (Recomendado)	0	0.87
	3.5	0.06	0.69

■ Notas sobre el Mecanizado en Rampa

- El ángulo en rampa debe estar por debajo de RMPX
- Reducir la tasa de avance recomendada en las condiciones de corte anteriores en un 70%.

Fórmula para Corte Máx. de Comprimento (L) no Ângulo Máx. de Rampa $L = -\frac{ap}{tan \, RMPX}$

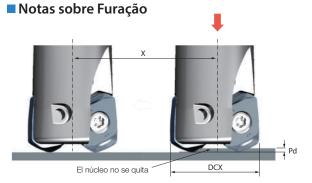
•En el mecanizado en rampa desde la periferia frontal y exterior, ajustar el máximo ángulo en rampa RMPX al 50%.

■ Tabla Referencial de Mecanizado en Rampa

Descripción	Diám. de Corte DCX (mm)	22	25	28	32	35	40	42	50	52	63	80
MFH04	Ángulo Máx. en Rampa RMPX	3.9°	3.0°	2.4°	2.0°	1.7°	1.4°	1.3°	1.0°	1.0°	0.8°	0.6°
WIFH04	tan RMPX	0.068	0.052	0.042	0.035	0.029	0.024	0.022	0.018	0.017	0.013	0.010

■ Notas sobre el Mecanizado Helicoidal

• Para el fresado helicoidal, utilice entre el diámetro de corte mínimo y el diámetro de corte máximo.



Descripción	Diám. Mín. de Corte (mm)	Diám. Máx. de Corte (mm)
MFH04	2×DCX-11	2×DCX-2

- · La profundidad máxima de mecanizado en rampa por ciclo debe estar por debajo de la máxima profundidad de corte ap (2,5 mm)
- Utilice el fresado concordante. (Consulte la figura anterior)
- Las tasas de avance deben reducirse al 50% de lo recomendado
- ·Tenga cuidado para eliminar las incidencias causadas por la formación de virutas largas.

	Tipo GM							
Descripción	Máx. Profundidad de Taladrado Pd (mm)	Mín. Longitud Min. de Corte X para una Superficie Plana (mm)						
MFH04	0.6	DCX-12						

- \bullet Se recomienda reducir el avance en un 25% hasta que sea removido el núcleo central
- ·La recomendación de avance axial por revolución es f ≤ 0,2mm/rev

■ Fresado Profundo

Descrição do Inserto	Ancho Máx. de Corte (ae)
Tipo LOMU04	5.0mm

[•] Reducir la tasa de avance para fz \leq 0.2mm/t para fresado profundo

Rápido, Fuerte y Eficiente

(Evaluación del Usuario)

